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Mineral properties in Earth’s lower mantle are affected by iron electronic states, but representative
pressures and temperatures have not yet been probed. Spin states of iron in lower-mantle ferropericlase
have been measured up to 95 gigapascals and 2000 kelvin with x-ray emission in a laser-heated
diamond cell. A gradual spin transition of iron occurs over a pressure-temperature range extending
from about 1000 kilometers in depth and 1900 kelvin to 2200 kilometers and 2300 kelvin in the lower
mantle. Because low-spin ferropericlase exhibits higher density and faster sound velocities relative to
the high-spin ferropericlase, the observed increase in low-spin (Mg,Fe)O at mid-lower mantle conditions
would manifest seismically as a lower-mantle spin transition zone characterized by a steeper-than-
normal density gradient.



Orbital wave function for electron:
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proune 2.1 Polar co-ordinates of am electoon in spacs,
Quantum numbers:
n: the principal quantum number from R(r), 1, 2, ...n

|: the azimuthal quantum number related to the shape of an orbit,
I 0,1, 2,...(n-1)

m,: the magnetic quantum number, the directions of maximum
extension in shape of the electron cloud, -I,....0,....,|

m,: spin quantum number, 1/2 (clockwise), -1/2 (anticlockwise)
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FIGURE 2.3 Orientations of ligands and d orbitals of a transition metal ion in
octahedral co-ordination (@) orientation of ligands with respect to the cartesian
axes; (b) the x~y plane of a transition metal ion in an octahedral crystal field.
dyy orbital is crosshatched; d, s orbital is open: ligands are black circles.
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FIGURE 2.4 Relative energy levels of d orbitals of a transition metal ion
in octahedral co-ordination.



Genera haracteristics of transition metal ion in the
low spin state:

+ smaller effective ionic radius, or smaller volume
+ higher elastic modulii
+ smaller magnetic moment

+ €lC.

++ Reduction of radiative conductivity of low-spin
Fp (Goncharov et al., 2006)



Sound velocitiesif Fpin
lower mantle condition
measure by nuclear
resonant inelastic X-ray
scattering to 110 GPa.

Lin et a, 2006
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Electronic spine state of Fe in Fp (Mg0.75Fe0.25)O and
Its crystal structure were studied up to 95 GPa and 2000
K with a LHDAC.

The samples were [110] oriented crystal plates or polycrystalline samples of
(MgO0.75Fe0.25)0, 12 y m thick and 70 y m in diameter. Samples were
sandwiched by dried NaCl layer in DAC with Be gasket.

The spin state were proved by in situ x-ray emission spectroscopy
(XES). A Rowland circle spectrometer with 1-m diameter was
configured around the double-side laser-heating system at APS. The
Fe fluorescence lines were excited by 14 keV x-ray beam focused
down to ca. 5 y m at the sample position. The XES spectra of the Fe
KB line were collected by a silicon detector through the Be gasket
and a Si(333) analyzer.



Fig. 2. Representative angle-dispersive (Mg, .5 Fe,.;)0 at 84 GPa
x-ray diffraction patterns of (Mgq 75,Feg25)0 A

at ~84 GPa and high temperatures col-
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Fig. S51. Representative x-ray emission spectra of Fe K collected from ferropericlase-
(Mg 7. Fe 20 at 39 GPa and high temperatures. X-ray emission spectra collected at
ambient pressure and B0 GPa are used as references for the 1AD analysis (56) of the high-
spin and low-spin states. respectively. Differences from the low-spin line shape. shown
helow the spectra, are used 1o derive the ratio of the high-spin 1o low-spin states in the

sample.



The satellite intensity is increased at higher spin, which is supported by
theoretical considerations (“should be S/(S+1) times that of the main peak”).
Thus gualitative analysis could be OK.

Analysis of XES to derive HS/LS ratio (integrated absolute disffrence (IAD)
analysis):

Let us note the HS and XE spectral functions a h(E) and I(E) , respectively ,
which are normalized to unit area at integration. The IAD value for the
complete spin transition can be given as IAD,;, =l h(E) - I(E) | dE. A
spectrum of in the transitional region is a superposition of those of the two
spinstates, thus it can be expresses as s =y, gh + (1- y4gh )I. The integrals
of its absolute value is

IAD(s) =[ Is(E) -I(E) | dE = y,,5 IAD,.
Yus- Proportion in the high spin state

The reference can be the HS spectrum as well or any linear combination of
the two spectra.



Fig. 1. Representative x-ray emission spec-
tra of Fe KB collected from ferropericlase-
(Mgg 75,Fep25)0 at high pressures and
temperatures. (A) 51 GPa and high tem-
peratures; (B} 80 GPa and high temper-
atures. High-quality XES spectra collected
at ambient pressure and 80 GPa are used
as references for the IAD analysis (23) of
the high-spin and low-spin states, respec-
tively. Differences from the low-spin line
shape, shown below the spectra, are used
to derive the ratio of the high-spin to low-
spin states in the sample. An energy shift of
~1.6 eV in the main emission peak (Kp)
can also be seen across the spin transition.
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Fig. S2. Fractions of the high-spin iron in {(Mgy7s.Fes2:)0 at high pressures and
temperatures. The high-spin fraction. yys. is derived from the line shape analysis of the
A-ray emission spectra (54) collected at high pressures and temperatures (Fig. 1) The
large error bars (= 1o) at 47 GPa and 1300 K arise from the low statistics of the XES

specirum.



Fig. 3. Isosymmetric spin
crossover of Fe”* in (Mgq 7s,
Feg.25)0. The phase diagram
is constructed from the inter-
polation and extrapolation of
the derived fractions of the
high-spin state in the sample
(fig. S2). Colors in the vertical
column on the right repre-
sent fractions of the high-spin

iron, yys, in (Mgg7s,Feg 2510,
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Fig. S2. Fractions of the high-spin iron in {(Mgy7s.Fes2:)0 at high pressures and
temperatures. The high-spin fraction. yys. is derived from the line shape analysis of the
A-ray emission spectra (54) collected at high pressures and temperatures (Fig. 1) The
large error bars (= 1o) at 47 GPa and 1300 K arise from the low statistics of the XES

specirum.



Adiabatic temperature
profilesin the Earth

Brown and Shankland,
1981.
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Figuee 2. Adisbatic temperature profils (a) in the mantle and (h) in the core, The corves have bean con-
sgtructed for the fowr dlfferent indicated tempemteres at 670 km depth, The second ciiave baginming at
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Fig. 4. Derived fractions of the
low-spin ferropericlase (A) and
density variation (B) along a
model lower-mantle geotherm
(20). Fraction of the low-spin
ferropericlase s derived from an
extrapolation of the experimental
data in Fig. 3. Density variations
in ferropericlase across the spin-
crossover region assume that the
density varies linearly with the
fraction of the low-spin iron (22).
Dashed line and dash-dotted line
represent derived density varia-
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tions using maximum variations of 2.8% and 4.2% across the spin-crossover region from evaluation

of recent experimental (5) and theoretical (11) data, respectively. Vertical bars represent the density
variations caused by 2% and 5% perturbation of total iron content in ferropericlase, respectively, at

ambient conditions (32).



Summary:

Spin state of iron in ferropericlase have been measure up to 95
GPa and 2000 K with X-ray emission in a LHDAC.

A gradual spin transition of iron occurs over a P-T range
extending from 1000 km and 1900 K to 2200 km and 2300 K in
the lower mantle.

As low-spin ferropericlase exhibits higher density and faster
sound velocities relative to the high-spin state ferropericlase, the
increase in low-spin (Mg,Fe)O in the lower mantle would manifest
seismically as a spin transition zone characterized by a steeper-
than-normal density gradient.

Spin transition in lower mantle phases including perovskite and
post-perovskite would have substantial effect on dynamics and
chemistry in the lower mantle



